Litigation Risk and IPO Underpricing

Michelle Lowry
Penn State University

Susan Shu
Boston College

Presentation by Gennaro Bernile
Overview of

- Problem in hand and related literature
- Model proposed and problems with previous literature
- Data and Methodology
- Results and Conclusions
Persistent and systematic phenomenon:
IPO’s earn an average 15% return on the 1st trading day

Possible explanations:
- Signaling Theory
- Information Asymmetry Theory
- Litigation Risk Theory
Signaling Story:

• Little empirical support is found by Jegadeesh, Weinstein and Welch (1993), Garfinkel (1993); Spiess and Pettway (1997).
Information Asymmetry Story:

• *Benveniste and Spindt (1989); Beatty and Ritter (1986); Rock (1986); Baron (1982)*: higher cost of learning about the firm’s true value is associated with higher IPO underpricing.

• Evidence seems to support this explanation: *Hanley (1993); Megginson and Weiss (1991); Koh and Walter (1989); Beatty and Ritter (1986)*
Litigation Insurance Story

• *Ibboston (1975) and Tinic (1988)*: issuers intentionally underprice IPO’s to insure themselves against future liability.

Tinic model:

\[
E(Litigation\ Cost)_t = f(\frac{P_0}{P_t}) \cdot g(P_0 - P_t)
\]

s.t. \(g'(.) > 0 \) and \(f''(.) > 0 \)

• *Hughes and Thakor (1992); Hensler (1995)*: extend the model yielding similar predictions

Empirical testable prediction: positive relation between underpricing and litigation risk
Previous tests of the litigation insurance hypothesis:

- *Tinic (1988)*: compares underpricing of IPO’s prior and subsequent to the 1933 Securities Act (1923-1930 vs. 1966-71), finding that returns in the latter period are significantly higher.
Previous tests of the litigation insurance hypothesis (cont’d):

• *Drake and Vetsuypens (1993):* compare a sample of 93 IPO’s for which the issuers were subsequently sued with a “matched” sample of non-sued IPO firms (based on year, underwriter rank and offer size).

Main findings:

1. $E(R_0)_{\text{sued}} > E(R_0)_{\text{nonsued}}$

2. ($\#\text{sued}:\#\text{IPO's} / E(R_0)>0) > (\#\text{sued}:\#\text{IPOs} / E(R_0)\leq0)$

?? Endogeneity Problem??
Endogeneity Problem:
1) High Litigation Risk \Rightarrow High Underpricing
2) High Underpricing \Rightarrow Low Litigation Risk

Main contribution of the paper is in that it analyzes both ways the relation between Underpricing and Litigation Risk:

1) *litigation insurance hp*: does litigation risk affect issuer’s incentives to underprice?
2) *litigation deterrence hp*: does underpricing lower the probability of being sued?
The model:

1) Insurance effect:
\[IR_i = \gamma_1 LR_i + \beta_1 X_{1i} + \epsilon_1 \]

2) Deterrence effect:
\[LR_i = \gamma_2 IR_i + \beta_2 X_{2i} + \epsilon_2 \]

IR=Initial Return; LR=Litigation Risk; (X_2X_1)=exogenous variables
The Methodology (Maddala, 1983, ch8):

Structural Model:
(1) \(IR = \gamma_1 \ast LR + \beta_1 \ast X_1 + \varepsilon_1 \)
(2) \(LR = \gamma_2 \ast IR + \beta_2 \ast X_2 + \varepsilon_2 \)
where \(LR=1 \) if sued
\(LR=0 \) otherwise

Reduced Form:
(3) \(IR = \Pi_1 \ast X + \eta_1 \)
(4) \(LR = \Pi_2 \ast X + \eta_2 \)
where \(X = (X_1 \ X_2) \)
Since LR is only observed as a dichotomous variable ⇒ by probit can only estimate \(\frac{\Pi_2}{\sigma_2} \) where \(\sigma_2 = \text{Var}(\eta_2) \), and the Reduced Form is:

(3) \[IR = \Pi_1 \times X + \eta_1 \]

(5) \[LR' = LR / \sigma_2 = \frac{\Pi_2}{\sigma_2} \times X + \frac{\eta_2}{\sigma_2} = \Pi_2' \times X + \eta_2' \]

The Structural Model can now by be written as:

(6) \[IR = \gamma_1 \sigma_2 \times LR' + \beta_1 \times X_1 + \varepsilon_1 \]

(7) \[LR' = (\gamma_2 / \sigma_2) \times IR + (\beta_2 / \sigma_2) \times X_2 + (\varepsilon_2 / \sigma_2) \]
2-stage estimation procedure:

1st - Estimate Π_1 in (3) by OLS and Π_2' in (5) by probit ML $\Rightarrow \Pi_1$ and Π_2

2nd - Estimate (6) by OLS after substituting $\Pi_2'*X$ for LR’ and estimate (7) by probit ML after substituting Π_1*X for IR \Rightarrow

\RightarrowEstimated Parameters:

- $\gamma_1 \sigma_2$
- β_1
- σ_1
- γ_2/σ_2
- β_2/σ_2
- σ_{12}/σ_2
DATA: Table 1, 2 and 3
Results

Litigation Insurance Hypothesis - Tab. 4
Results (cont’d)
Litigation Deterrence Hypothesis - Tab. 5/A
Results (cont’d)
Litigation Deterrence Hypothesis - Tab. 5/B
Conclusions:

- Evidence supports both Insurance and Deterrence Hp
- More importantly, highlights the importance of controlling for endogeneity of the explanatory variables employed
Return to FIN 533

http://schwert.ssb.rochester.edu/f533/f533main.htm